Neural Networks Using Tensorflow

COM SCI X 450.8

Get an introduction to the core concepts needed to implement a neural network application in Tensorflow. A final project crystallizes key concepts and familiarizes students with Tensorflow protocols.

READ MORE ABOUT THIS COURSE

About this course:

Neural networks have gained widespread recognition for their ability to provide solutions to applications for which alternative machine learning approaches are inadequate. A plethora of successful high profile applications has heightened public interest in this field. Successful applications include automated control of self-driving vehicles, computer chess and go algorithms that defeat all human opponents, automated language translation services, speech recognition, speech generation, as well as computer-generated music composition and artistic renderings. In the past, the field of neural networks was accessible to only specialists in the field. However, availability of software including Google’s recent release of its neural network software package, Tensorflow, allows practitioners in data science to configure, train, and deploy neural networks for a wide range of applications. This course introduces practitioners to the core concepts needed to make key architectural and configuration decisions and then implement a neural network application in Tensorflow. A final project crystallizes key concepts as well as familiarizing the student with Tensorflow protocols.
Suggested Prerequisites

It is advisable that you complete the following (or equivalent) since they are prerequisites for Neural Networks Using Tensorflow.

Programming: The student is expected to have basic programming skills that one would obtain from experience with a high-level language. Knowledge of Python would be helpful but is not required. Students without Python experience are welcome and must be prepared to learn basic syntax and control structures on their own.

Mathematics: As Tensorflow performs the more complicated mathematical operations, mathematical prerequisites are minimal; precalculus is the only prerequisite. Students with a stronger background will have the opportunity to investigate topics in more depth and will find some material more accessible.

Data Science: Students should be familiar with basic tools of data science including preparing data, sampling, and regression.

Contact Us

Our team members are here to help. Hours: Mon-Fri, 8am-5pm.

This course applies towards the following certificates & specializations…

Keep up to date on the latest news and offerings in Data Analytics & Management

vector icon of building

Corporate Education

Learn how we can help your organization meet its professional development goals and corporate training needs.

Learn More

vector icon of building

Donate to UCLA Extension

Support our many efforts to reach communities in need.

Innovation Programs

Student Scholarships

Coding Boot Camp

Lifelong Learning